phorge/externals/figlet/inflate.ce81eff68e581master
phorge/externals/figlet/inflate.c
e81eff68e581master
inflate.c
inflate.c
935ced1eddbe | /* | ||
---|---|---|---|
* inflate.c - inflate decompression routine | |||
* | |||
* Version 1.1.2 | |||
*/ | |||
/* | |||
* Copyright (C) 1995, Edward B. Hamrick | |||
* | |||
* Permission to use, copy, modify, and distribute this software and | |||
* its documentation for any purpose and without fee is hereby granted, | |||
* provided that the above copyright notice appear in all copies and | |||
* that both that copyright notice and this permission notice appear in | |||
* supporting documentation, and that the name of the copyright holders | |||
* not be used in advertising or publicity pertaining to distribution of | |||
* the software without specific, written prior permission. The copyright | |||
* holders makes no representations about the suitability of this software | |||
* for any purpose. It is provided "as is" without express or implied warranty. | |||
* | |||
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS | |||
* SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, | |||
* IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT | |||
* OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF | |||
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER | |||
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE | |||
* OF THIS SOFTWARE. | |||
*/ | |||
/* | |||
* Changes from 1.1 to 1.1.2: | |||
* Relicensed under the MIT license, with consent of the copyright holders. | |||
* Claudio Matsuoka (Jan 11 2011) | |||
*/ | |||
/* | |||
* inflate.c is based on the public-domain (non-copyrighted) version | |||
* written by Mark Adler, version c14o, 23 August 1994. It has been | |||
* modified to be reentrant, more portable, and to be data driven. | |||
*/ | |||
/* | |||
* 1) All file i/o is done externally to these routines | |||
* 2) Routines are symmetrical so inflate can feed into deflate | |||
* 3) Routines can be easily integrated into wide range of applications | |||
* 4) Routines are very portable, and use only ANSI C | |||
* 5) No #defines in inflate.h to conflict with external #defines | |||
* 6) No external routines need be called by these routines | |||
* 7) Buffers are owned by the calling routine | |||
* 8) No static non-constant variables are allowed | |||
*/ | |||
/* | |||
* Note that for each call to InflatePutBuffer, there will be | |||
* 0 or more calls to (*putbuffer_ptr). Before InflatePutBuffer | |||
* returns, it will have output as much uncompressed data as | |||
* is possible. | |||
*/ | |||
#ifdef MEMCPY | |||
#include <mem.h> | |||
#endif | |||
#include "inflate.h" | |||
/* | |||
* Macros for constants | |||
*/ | |||
#ifndef NULL | |||
#define NULL ((void *) 0) | |||
#endif | |||
#ifndef TRUE | |||
#define TRUE 1 | |||
#endif | |||
#ifndef FALSE | |||
#define FALSE 0 | |||
#endif | |||
#ifndef WINDOWSIZE | |||
#define WINDOWSIZE 0x8000 | |||
#endif | |||
#ifndef WINDOWMASK | |||
#define WINDOWMASK 0x7fff | |||
#endif | |||
#ifndef BUFFERSIZE | |||
#define BUFFERSIZE 0x4000 | |||
#endif | |||
#ifndef BUFFERMASK | |||
#define BUFFERMASK 0x3fff | |||
#endif | |||
#ifndef INFLATESTATETYPE | |||
#define INFLATESTATETYPE 0xabcdabcdL | |||
#endif | |||
/* | |||
* typedefs | |||
*/ | |||
typedef unsigned long ulg; | |||
typedef unsigned short ush; | |||
typedef unsigned char uch; | |||
/* Structure to hold state for inflating zip files */ | |||
struct InflateState { | |||
unsigned long runtimetypeid1; /* to detect run-time errors */ | |||
int errorencountered; /* error encountered flag */ | |||
/* Decoding state */ | |||
int state; /* -1 -> need block type */ | |||
/* 0 -> need stored setup */ | |||
/* 1 -> need fixed setup */ | |||
/* 2 -> need dynamic setup */ | |||
/* 10 -> need stored data */ | |||
/* 11 -> need fixed data */ | |||
/* 12 -> need dynamic data */ | |||
/* State for decoding fixed & dynamic data */ | |||
struct huft *tl; /* literal/length decoder tbl */ | |||
struct huft *td; /* distance decoder table */ | |||
int bl; /* bits decoded by tl */ | |||
int bd; /* bits decoded by td */ | |||
/* State for decoding stored data */ | |||
unsigned int storelength; | |||
/* State to keep track that last block has been encountered */ | |||
int lastblock; /* current block is last */ | |||
/* Input buffer state (circular) */ | |||
ulg bb; /* input buffer bits */ | |||
unsigned int bk; /* input buffer count of bits */ | |||
unsigned int bp; /* input buffer pointer */ | |||
unsigned int bs; /* input buffer size */ | |||
unsigned char buffer[BUFFERSIZE]; /* input buffer data */ | |||
/* Storage for try/catch */ | |||
ulg catch_bb; /* bit buffer */ | |||
unsigned int catch_bk; /* bits in bit buffer */ | |||
unsigned int catch_bp; /* buffer pointer */ | |||
unsigned int catch_bs; /* buffer size */ | |||
/* Output window state (circular) */ | |||
unsigned int wp; /* output window pointer */ | |||
unsigned int wf; /* output window flush-from */ | |||
unsigned char window[WINDOWSIZE]; /* output window data */ | |||
/* Application state */ | |||
void *AppState; /* opaque ptr for callout */ | |||
/* pointers to call-outs */ | |||
int (*putbuffer_ptr)( /* returns 0 on success */ | |||
void *AppState, /* opaque ptr from Initialize */ | |||
unsigned char *buffer, /* buffer to put */ | |||
long length /* length of buffer */ | |||
); | |||
void *(*malloc_ptr)(long length); /* utility routine */ | |||
void (*free_ptr)(void *buffer); /* utility routine */ | |||
unsigned long runtimetypeid2; /* to detect run-time errors */ | |||
}; | |||
/* | |||
* Error handling macro | |||
*/ | |||
#define ERROREXIT(is) {(is)->errorencountered = TRUE; return TRUE;} | |||
/* | |||
* Macros for handling data in the input buffer | |||
* | |||
* Note that the NEEDBITS and DUMPBITS macros | |||
* need to be bracketed by the TRY/CATCH macros | |||
* | |||
* The usage is: | |||
* | |||
* TRY | |||
* { | |||
* NEEDBITS(j) | |||
* x = b & mask_bits[j]; | |||
* DUMPBITS(j) | |||
* } | |||
* CATCH_BEGIN | |||
* cleanup code | |||
* CATCH_END | |||
* | |||
* Note that there can only be one TRY/CATCH pair per routine | |||
* because of the use of goto in the implementation of the macros. | |||
* | |||
* NEEDBITS makes sure that b has at least j bits in it, and | |||
* DUMPBITS removes the bits from b. The macros use the variable k | |||
* for the number of bits in b. Normally, b and k are register | |||
* variables for speed, and are initialized at the beginning of a | |||
* routine that uses these macros from a global bit buffer and count. | |||
* | |||
* In order to not ask for more bits than there are in the compressed | |||
* stream, the Huffman tables are constructed to only ask for just | |||
* enough bits to make up the end-of-block code (value 256). Then no | |||
* bytes need to be "returned" to the buffer at the end of the last | |||
* block. See the huft_build() routine. | |||
*/ | |||
#define TRY \ | |||
is->catch_bb = b; \ | |||
is->catch_bk = k; \ | |||
is->catch_bp = is->bp; \ | |||
is->catch_bs = is->bs; | |||
#define CATCH_BEGIN \ | |||
goto cleanup_done; \ | |||
cleanup: \ | |||
b = is->catch_bb; \ | |||
k = is->catch_bk; \ | |||
is->bb = b; \ | |||
is->bk = k; \ | |||
is->bp = is->catch_bp; \ | |||
is->bs = is->catch_bs; | |||
#define CATCH_END \ | |||
cleanup_done: ; | |||
#define NEEDBITS(n) \ | |||
{ \ | |||
while (k < (n)) \ | |||
{ \ | |||
if (is->bs <= 0) \ | |||
{ \ | |||
goto cleanup; \ | |||
} \ | |||
b |= ((ulg) (is->buffer[is->bp & BUFFERMASK])) << k; \ | |||
is->bs--; \ | |||
is->bp++; \ | |||
k += 8; \ | |||
} \ | |||
} | |||
#define DUMPBITS(n) \ | |||
{ \ | |||
b >>= (n); \ | |||
k -= (n); \ | |||
} | |||
/* | |||
* Macro for flushing the output window to the putbuffer callout. | |||
* | |||
* Note that the window is always flushed when it fills to 32K, | |||
* and before returning to the application. | |||
*/ | |||
#define FLUSHWINDOW(w, now) \ | |||
if ((now && (is->wp > is->wf)) || ((w) >= WINDOWSIZE)) \ | |||
{ \ | |||
is->wp = (w); \ | |||
if ((*(is->putbuffer_ptr)) \ | |||
(is->AppState, is->window+is->wf, is->wp-is->wf)) \ | |||
ERROREXIT(is); \ | |||
is->wp &= WINDOWMASK; \ | |||
is->wf = is->wp; \ | |||
(w) = is->wp; \ | |||
} | |||
/* | |||
* Inflate deflated (PKZIP's method 8 compressed) data. The compression | |||
* method searches for as much of the current string of bytes (up to a | |||
* length of 258) in the previous 32K bytes. If it doesn't find any | |||
* matches (of at least length 3), it codes the next byte. Otherwise, it | |||
* codes the length of the matched string and its distance backwards from | |||
* the current position. There is a single Huffman code that codes both | |||
* single bytes (called "literals") and match lengths. A second Huffman | |||
* code codes the distance information, which follows a length code. Each | |||
* length or distance code actually represents a base value and a number | |||
* of "extra" (sometimes zero) bits to get to add to the base value. At | |||
* the end of each deflated block is a special end-of-block (EOB) literal/ | |||
* length code. The decoding process is basically: get a literal/length | |||
* code; if EOB then done; if a literal, emit the decoded byte; if a | |||
* length then get the distance and emit the referred-to bytes from the | |||
* sliding window of previously emitted data. | |||
* | |||
* There are (currently) three kinds of inflate blocks: stored, fixed, and | |||
* dynamic. The compressor outputs a chunk of data at a time and decides | |||
* which method to use on a chunk-by-chunk basis. A chunk might typically | |||
* be 32K to 64K, uncompressed. If the chunk is uncompressible, then the | |||
* "stored" method is used. In this case, the bytes are simply stored as | |||
* is, eight bits per byte, with none of the above coding. The bytes are | |||
* preceded by a count, since there is no longer an EOB code. | |||
* | |||
* If the data is compressible, then either the fixed or dynamic methods | |||
* are used. In the dynamic method, the compressed data is preceded by | |||
* an encoding of the literal/length and distance Huffman codes that are | |||
* to be used to decode this block. The representation is itself Huffman | |||
* coded, and so is preceded by a description of that code. These code | |||
* descriptions take up a little space, and so for small blocks, there is | |||
* a predefined set of codes, called the fixed codes. The fixed method is | |||
* used if the block ends up smaller that way (usually for quite small | |||
* chunks); otherwise the dynamic method is used. In the latter case, the | |||
* codes are customized to the probabilities in the current block and so | |||
* can code it much better than the pre-determined fixed codes can. | |||
* | |||
* The Huffman codes themselves are decoded using a mutli-level table | |||
* lookup, in order to maximize the speed of decoding plus the speed of | |||
* building the decoding tables. See the comments below that precede the | |||
* lbits and dbits tuning parameters. | |||
*/ | |||
/* | |||
* Notes beyond the 1.93a appnote.txt: | |||
* | |||
* 1. Distance pointers never point before the beginning of the output | |||
* stream. | |||
* 2. Distance pointers can point back across blocks, up to 32k away. | |||
* 3. There is an implied maximum of 7 bits for the bit length table and | |||
* 15 bits for the actual data. | |||
* 4. If only one code exists, then it is encoded using one bit. (Zero | |||
* would be more efficient, but perhaps a little confusing.) If two | |||
* codes exist, they are coded using one bit each (0 and 1). | |||
* 5. There is no way of sending zero distance codes--a dummy must be | |||
* sent if there are none. (History: a pre 2.0 version of PKZIP would | |||
* store blocks with no distance codes, but this was discovered to be | |||
* too harsh a criterion.) Valid only for 1.93a. 2.04c does allow | |||
* zero distance codes, which is sent as one code of zero bits in | |||
* length. | |||
* 6. There are up to 286 literal/length codes. Code 256 represents the | |||
* end-of-block. Note however that the static length tree defines | |||
* 288 codes just to fill out the Huffman codes. Codes 286 and 287 | |||
* cannot be used though, since there is no length base or extra bits | |||
* defined for them. Similarly, there are up to 30 distance codes. | |||
* However, static trees define 32 codes (all 5 bits) to fill out the | |||
* Huffman codes, but the last two had better not show up in the data. | |||
* 7. Unzip can check dynamic Huffman blocks for complete code sets. | |||
* The exception is that a single code would not be complete (see #4). | |||
* 8. The five bits following the block type is really the number of | |||
* literal codes sent minus 257. | |||
* 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits | |||
* (1+6+6). Therefore, to output three times the length, you output | |||
* three codes (1+1+1), whereas to output four times the same length, | |||
* you only need two codes (1+3). Hmm. | |||
*10. In the tree reconstruction algorithm, Code = Code + Increment | |||
* only if BitLength(i) is not zero. (Pretty obvious.) | |||
*11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) | |||
*12. Note: length code 284 can represent 227-258, but length code 285 | |||
* really is 258. The last length deserves its own, short code | |||
* since it gets used a lot in very redundant files. The length | |||
* 258 is special since 258 - 3 (the min match length) is 255. | |||
*13. The literal/length and distance code bit lengths are read as a | |||
* single stream of lengths. It is possible (and advantageous) for | |||
* a repeat code (16, 17, or 18) to go across the boundary between | |||
* the two sets of lengths. | |||
*/ | |||
/* | |||
* Huffman code lookup table entry--this entry is four bytes for machines | |||
* that have 16-bit pointers (e.g. PC's in the small or medium model). | |||
* Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16 | |||
* means that v is a literal, 16 < e < 32 means that v is a pointer to | |||
* the next table, which codes e - 16 bits, and lastly e == 99 indicates | |||
* an unused code. If a code with e == 99 is looked up, this implies an | |||
* error in the data. | |||
*/ | |||
struct huft { | |||
uch e; /* number of extra bits or operation */ | |||
uch b; /* number of bits in this code or subcode */ | |||
union { | |||
ush n; /* literal, length base, or distance base */ | |||
struct huft *t; /* pointer to next level of table */ | |||
} v; | |||
}; | |||
/* | |||
* Tables for deflate from PKZIP's appnote.txt. | |||
*/ | |||
static const unsigned border[] = { /* Order of the bit length code lengths */ | |||
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; | |||
static const ush cplens[] = { /* Copy lengths for literal codes 257..285 */ | |||
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, | |||
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; | |||
/* note: see note #13 above about the 258 in this list. */ | |||
static const ush cplext[] = { /* Extra bits for literal codes 257..285 */ | |||
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, | |||
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ | |||
static const ush cpdist[] = { /* Copy offsets for distance codes 0..29 */ | |||
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, | |||
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, | |||
8193, 12289, 16385, 24577}; | |||
static const ush cpdext[] = { /* Extra bits for distance codes */ | |||
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, | |||
7, 7, 8, 8, 9, 9, 10, 10, 11, 11, | |||
12, 12, 13, 13}; | |||
/* | |||
* Constants for run-time computation of mask | |||
*/ | |||
static const ush mask_bits[] = { | |||
0x0000, | |||
0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, | |||
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff | |||
}; | |||
/* | |||
* Huffman code decoding is performed using a multi-level table lookup. | |||
* The fastest way to decode is to simply build a lookup table whose | |||
* size is determined by the longest code. However, the time it takes | |||
* to build this table can also be a factor if the data being decoded | |||
* is not very long. The most common codes are necessarily the | |||
* shortest codes, so those codes dominate the decoding time, and hence | |||
* the speed. The idea is you can have a shorter table that decodes the | |||
* shorter, more probable codes, and then point to subsidiary tables for | |||
* the longer codes. The time it costs to decode the longer codes is | |||
* then traded against the time it takes to make longer tables. | |||
* | |||
* This results of this trade are in the variables lbits and dbits | |||
* below. lbits is the number of bits the first level table for literal/ | |||
* length codes can decode in one step, and dbits is the same thing for | |||
* the distance codes. Subsequent tables are also less than or equal to | |||
* those sizes. These values may be adjusted either when all of the | |||
* codes are shorter than that, in which case the longest code length in | |||
* bits is used, or when the shortest code is *longer* than the requested | |||
* table size, in which case the length of the shortest code in bits is | |||
* used. | |||
* | |||
* There are two different values for the two tables, since they code a | |||
* different number of possibilities each. The literal/length table | |||
* codes 286 possible values, or in a flat code, a little over eight | |||
* bits. The distance table codes 30 possible values, or a little less | |||
* than five bits, flat. The optimum values for speed end up being | |||
* about one bit more than those, so lbits is 8+1 and dbits is 5+1. | |||
* The optimum values may differ though from machine to machine, and | |||
* possibly even between compilers. Your mileage may vary. | |||
*/ | |||
static const int lbits = 9; /* bits in base literal/length lookup table */ | |||
static const int dbits = 6; /* bits in base distance lookup table */ | |||
/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */ | |||
#define BMAX 16 /* maximum bit length of any code (16 for explode) */ | |||
#define N_MAX 288 /* maximum number of codes in any set */ | |||
/* | |||
* Free the malloc'ed tables built by huft_build(), which makes a linked | |||
* list of the tables it made, with the links in a dummy first entry of | |||
* each table. | |||
*/ | |||
static int huft_free( | |||
struct InflateState *is, /* Inflate state */ | |||
struct huft *t /* table to free */ | |||
) | |||
{ | |||
struct huft *p, *q; | |||
/* Go through linked list, freeing from the malloced (t[-1]) address. */ | |||
p = t; | |||
while (p != (struct huft *)NULL) | |||
{ | |||
q = (--p)->v.t; | |||
(*is->free_ptr)((char*)p); | |||
p = q; | |||
} | |||
return 0; | |||
} | |||
/* | |||
* Given a list of code lengths and a maximum table size, make a set of | |||
* tables to decode that set of codes. Return zero on success, one if | |||
* the given code set is incomplete (the tables are still built in this | |||
* case), two if the input is invalid (all zero length codes or an | |||
* oversubscribed set of lengths), and three if not enough memory. | |||
* The code with value 256 is special, and the tables are constructed | |||
* so that no bits beyond that code are fetched when that code is | |||
* decoded. | |||
*/ | |||
static int huft_build( | |||
struct InflateState *is, /* Inflate state */ | |||
unsigned *b, /* code lengths in bits (all assumed <= BMAX) */ | |||
unsigned n, /* number of codes (assumed <= N_MAX) */ | |||
unsigned s, /* number of simple-valued codes (0..s-1) */ | |||
const ush *d, /* list of base values for non-simple codes */ | |||
const ush *e, /* list of extra bits for non-simple codes */ | |||
struct huft **t, /* result: starting table */ | |||
int *m /* maximum lookup bits, returns actual */ | |||
) | |||
{ | |||
unsigned a; /* counter for codes of length k */ | |||
unsigned c[BMAX+1]; /* bit length count table */ | |||
unsigned el; /* length of EOB code (value 256) */ | |||
unsigned f; /* i repeats in table every f entries */ | |||
int g; /* maximum code length */ | |||
int h; /* table level */ | |||
unsigned i; /* counter, current code */ | |||
unsigned j; /* counter */ | |||
int k; /* number of bits in current code */ | |||
int lx[BMAX+1]; /* memory for l[-1..BMAX-1] */ | |||
int *l = lx+1; /* stack of bits per table */ | |||
unsigned *p; /* pointer into c[], b[], or v[] */ | |||
struct huft *q; /* points to current table */ | |||
struct huft r; /* table entry for structure assignment */ | |||
struct huft *u[BMAX]; /* table stack */ | |||
unsigned v[N_MAX]; /* values in order of bit length */ | |||
int w; /* bits before this table == (l * h) */ | |||
unsigned x[BMAX+1]; /* bit offsets, then code stack */ | |||
unsigned *xp; /* pointer into x */ | |||
int y; /* number of dummy codes added */ | |||
unsigned z; /* number of entries in current table */ | |||
/* clear the bit length count table */ | |||
for (i=0; i<(BMAX+1); i++) | |||
{ | |||
c[i] = 0; | |||
} | |||
/* Generate counts for each bit length */ | |||
el = n > 256 ? b[256] : BMAX; /* set length of EOB code, if any */ | |||
p = b; i = n; | |||
do { | |||
c[*p]++; p++; /* assume all entries <= BMAX */ | |||
} while (--i); | |||
if (c[0] == n) /* null input--all zero length codes */ | |||
{ | |||
*t = (struct huft *)NULL; | |||
*m = 0; | |||
return 0; | |||
} | |||
/* Find minimum and maximum length, bound *m by those */ | |||
for (j = 1; j <= BMAX; j++) | |||
if (c[j]) | |||
break; | |||
k = j; /* minimum code length */ | |||
if ((unsigned)*m < j) | |||
*m = j; | |||
for (i = BMAX; i; i--) | |||
if (c[i]) | |||
break; | |||
g = i; /* maximum code length */ | |||
if ((unsigned)*m > i) | |||
*m = i; | |||
/* Adjust last length count to fill out codes, if needed */ | |||
for (y = 1 << j; j < i; j++, y <<= 1) | |||
if ((y -= c[j]) < 0) | |||
return 2; /* bad input: more codes than bits */ | |||
if ((y -= c[i]) < 0) | |||
return 2; | |||
c[i] += y; | |||
/* Generate starting offsets into the value table for each length */ | |||
x[1] = j = 0; | |||
p = c + 1; xp = x + 2; | |||
while (--i) { /* note that i == g from above */ | |||
*xp++ = (j += *p++); | |||
} | |||
/* Make a table of values in order of bit lengths */ | |||
p = b; i = 0; | |||
do { | |||
if ((j = *p++) != 0) | |||
v[x[j]++] = i; | |||
} while (++i < n); | |||
/* Generate the Huffman codes and for each, make the table entries */ | |||
x[0] = i = 0; /* first Huffman code is zero */ | |||
p = v; /* grab values in bit order */ | |||
h = -1; /* no tables yet--level -1 */ | |||
w = l[-1] = 0; /* no bits decoded yet */ | |||
u[0] = (struct huft *)NULL; /* just to keep compilers happy */ | |||
q = (struct huft *)NULL; /* ditto */ | |||
z = 0; /* ditto */ | |||
/* go through the bit lengths (k already is bits in shortest code) */ | |||
for (; k <= g; k++) | |||
{ | |||
a = c[k]; | |||
while (a--) | |||
{ | |||
/* here i is the Huffman code of length k bits for value *p */ | |||
/* make tables up to required level */ | |||
while (k > w + l[h]) | |||
{ | |||
w += l[h++]; /* add bits already decoded */ | |||
/* compute minimum size table less than or equal to *m bits */ | |||
z = (z = g - w) > (unsigned)*m ? *m : z; /* upper limit */ | |||
if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ | |||
{ /* too few codes for k-w bit table */ | |||
f -= a + 1; /* deduct codes from patterns left */ | |||
xp = c + k; | |||
while (++j < z) /* try smaller tables up to z bits */ | |||
{ | |||
if ((f <<= 1) <= *++xp) | |||
break; /* enough codes to use up j bits */ | |||
f -= *xp; /* else deduct codes from patterns */ | |||
} | |||
} | |||
if ((unsigned)w + j > el && (unsigned)w < el) | |||
j = el - w; /* make EOB code end at table */ | |||
z = 1 << j; /* table entries for j-bit table */ | |||
l[h] = j; /* set table size in stack */ | |||
/* allocate and link in new table */ | |||
if ((q = (struct huft *) | |||
((*is->malloc_ptr)((z + 1)*sizeof(struct huft)))) == | |||
(struct huft *)NULL) | |||
{ | |||
if (h) | |||
huft_free(is, u[0]); | |||
return 3; /* not enough memory */ | |||
} | |||
*t = q + 1; /* link to list for huft_free() */ | |||
*(t = &(q->v.t)) = (struct huft *)NULL; | |||
u[h] = ++q; /* table starts after link */ | |||
/* connect to last table, if there is one */ | |||
if (h) | |||
{ | |||
x[h] = i; /* save pattern for backing up */ | |||
r.b = (uch)l[h-1]; /* bits to dump before this table */ | |||
r.e = (uch)(16 + j); /* bits in this table */ | |||
r.v.t = q; /* pointer to this table */ | |||
j = (i & ((1 << w) - 1)) >> (w - l[h-1]); | |||
u[h-1][j] = r; /* connect to last table */ | |||
} | |||
} | |||
/* set up table entry in r */ | |||
r.b = (uch)(k - w); | |||
if (p >= v + n) | |||
r.e = 99; /* out of values--invalid code */ | |||
else if (*p < s) | |||
{ | |||
r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */ | |||
r.v.n = (ush) *p++; /* simple code is just the value */ | |||
} | |||
else | |||
{ | |||
r.e = (uch)e[*p - s]; /* non-simple--look up in lists */ | |||
r.v.n = d[*p++ - s]; | |||
} | |||
/* fill code-like entries with r */ | |||
f = 1 << (k - w); | |||
for (j = i >> w; j < z; j += f) | |||
q[j] = r; | |||
/* backwards increment the k-bit code i */ | |||
for (j = 1 << (k - 1); i & j; j >>= 1) | |||
i ^= j; | |||
i ^= j; | |||
/* backup over finished tables */ | |||
while ((i & ((1 << w) - 1)) != x[h]) | |||
w -= l[--h]; /* don't need to update q */ | |||
} | |||
} | |||
/* return actual size of base table */ | |||
*m = l[0]; | |||
/* Return true (1) if we were given an incomplete table */ | |||
return y != 0 && g != 1; | |||
} | |||
/* | |||
* inflate (decompress) the codes in a stored (uncompressed) block. | |||
* Return an error code or zero if it all goes ok. | |||
*/ | |||
static int inflate_stored( | |||
struct InflateState *is /* Inflate state */ | |||
) | |||
{ | |||
ulg b; /* bit buffer */ | |||
unsigned k; /* number of bits in bit buffer */ | |||
unsigned w; /* current window position */ | |||
/* make local copies of state */ | |||
b = is->bb; /* initialize bit buffer */ | |||
k = is->bk; /* initialize bit count */ | |||
w = is->wp; /* initialize window position */ | |||
/* | |||
* Note that this code knows that NEEDBITS jumps to cleanup | |||
*/ | |||
while (is->storelength > 0) /* do until end of block */ | |||
{ | |||
NEEDBITS(8) | |||
is->window[w++] = (uch) b; | |||
DUMPBITS(8) | |||
FLUSHWINDOW(w, FALSE); | |||
is->storelength--; | |||
} | |||
cleanup: | |||
/* restore the state from the locals */ | |||
is->bb = b; /* restore bit buffer */ | |||
is->bk = k; /* restore bit count */ | |||
is->wp = w; /* restore window pointer */ | |||
if (is->storelength > 0) | |||
return -1; | |||
else | |||
return 0; | |||
} | |||
static int inflate_codes( | |||
struct InflateState *is, /* Inflate state */ | |||
struct huft *tl, /* literal/length decoder table */ | |||
struct huft *td, /* distance decoder table */ | |||
int bl, /* number of bits decoded by tl[] */ | |||
int bd /* number of bits decoded by td[] */ | |||
) | |||
{ | |||
unsigned e; /* table entry flag/number of extra bits */ | |||
unsigned n, d; /* length and index for copy */ | |||
unsigned w; /* current window position */ | |||
struct huft *t; /* pointer to table entry */ | |||
unsigned ml, md; /* masks for bl and bd bits */ | |||
ulg b; /* bit buffer */ | |||
unsigned k; /* number of bits in bit buffer */ | |||
/* make local copies of state */ | |||
b = is->bb; /* initialize bit buffer */ | |||
k = is->bk; /* initialize bit count */ | |||
w = is->wp; /* initialize window position */ | |||
/* inflate the coded data */ | |||
ml = mask_bits[bl]; /* precompute masks for speed */ | |||
md = mask_bits[bd]; | |||
for (;;) /* do until end of block */ | |||
{ | |||
TRY | |||
{ | |||
NEEDBITS((unsigned)bl) | |||
if ((e = (t = tl + ((unsigned)b & ml))->e) > 16) | |||
do { | |||
if (e == 99) | |||
return 1; | |||
DUMPBITS(t->b) | |||
e -= 16; | |||
NEEDBITS(e) | |||
} while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); | |||
DUMPBITS(t->b) | |||
if (e == 16) /* it's a literal */ | |||
{ | |||
is->window[w++] = (uch)t->v.n; | |||
FLUSHWINDOW(w, FALSE); | |||
} | |||
else if (e == 15) /* it's an EOB */ | |||
{ | |||
break; | |||
} | |||
else /* it's a length */ | |||
{ | |||
/* get length of block to copy */ | |||
NEEDBITS(e) | |||
n = t->v.n + ((unsigned)b & mask_bits[e]); | |||
DUMPBITS(e); | |||
/* decode distance of block to copy */ | |||
NEEDBITS((unsigned)bd) | |||
if ((e = (t = td + ((unsigned)b & md))->e) > 16) | |||
do { | |||
if (e == 99) | |||
return 1; | |||
DUMPBITS(t->b) | |||
e -= 16; | |||
NEEDBITS(e) | |||
} while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); | |||
DUMPBITS(t->b) | |||
NEEDBITS(e) | |||
d = w - t->v.n - ((unsigned)b & mask_bits[e]); | |||
DUMPBITS(e) | |||
/* do the copy */ | |||
do { | |||
n -= (e = ((e = WINDOWSIZE - ((d &= WINDOWMASK) > w ? d : w)) > n) | |||
? n : e | |||
); | |||
#if defined(MEMCPY) | |||
if (w - d >= e) /* (this test assumes unsigned comparison) */ | |||
{ | |||
memcpy(is->window + w, is->window + d, e); | |||
w += e; | |||
d += e; | |||
} | |||
else /* do it slow to avoid memcpy() overlap */ | |||
#endif /* MEMCPY */ | |||
do { | |||
is->window[w++] = is->window[d++]; | |||
} while (--e); | |||
FLUSHWINDOW(w, FALSE); | |||
} while (n); | |||
} | |||
} | |||
CATCH_BEGIN | |||
is->wp = w; /* restore window pointer */ | |||
return -1; | |||
CATCH_END | |||
} | |||
/* restore the state from the locals */ | |||
is->bb = b; /* restore bit buffer */ | |||
is->bk = k; /* restore bit count */ | |||
is->wp = w; /* restore window pointer */ | |||
/* done */ | |||
return 0; | |||
} | |||
/* | |||
* "decompress" an inflated type 0 (stored) block. | |||
*/ | |||
static int inflate_stored_setup( | |||
struct InflateState *is /* Inflate state */ | |||
) | |||
{ | |||
unsigned n; /* number of bytes in block */ | |||
ulg b; /* bit buffer */ | |||
unsigned k; /* number of bits in bit buffer */ | |||
/* make local copies of state */ | |||
b = is->bb; /* initialize bit buffer */ | |||
k = is->bk; /* initialize bit count */ | |||
TRY | |||
{ | |||
/* go to byte boundary */ | |||
n = k & 7; | |||
DUMPBITS(n); | |||
/* get the length and its complement */ | |||
NEEDBITS(16) | |||
n = ((unsigned)b & 0xffff); | |||
DUMPBITS(16) | |||
NEEDBITS(16) | |||
if (n != (unsigned)((~b) & 0xffff)) | |||
return 1; /* error in compressed data */ | |||
DUMPBITS(16) | |||
} | |||
CATCH_BEGIN | |||
return -1; | |||
CATCH_END | |||
/* Save store state for this block */ | |||
is->storelength = n; | |||
/* restore the state from the locals */ | |||
is->bb = b; /* restore bit buffer */ | |||
is->bk = k; /* restore bit count */ | |||
return 0; | |||
} | |||
/* | |||
* decompress an inflated type 1 (fixed Huffman codes) block. We should | |||
* either replace this with a custom decoder, or at least precompute the | |||
* Huffman tables. | |||
*/ | |||
static int inflate_fixed_setup( | |||
struct InflateState *is /* Inflate state */ | |||
) | |||
{ | |||
int i; /* temporary variable */ | |||
struct huft *tl; /* literal/length code table */ | |||
struct huft *td; /* distance code table */ | |||
int bl; /* lookup bits for tl */ | |||
int bd; /* lookup bits for td */ | |||
unsigned l[288]; /* length list for huft_build */ | |||
/* set up literal table */ | |||
for (i = 0; i < 144; i++) | |||
l[i] = 8; | |||
for (; i < 256; i++) | |||
l[i] = 9; | |||
for (; i < 280; i++) | |||
l[i] = 7; | |||
for (; i < 288; i++) /* make a complete, but wrong code set */ | |||
l[i] = 8; | |||
bl = 7; | |||
if ((i = huft_build(is, l, 288, 257, cplens, cplext, &tl, &bl)) != 0) | |||
return i; | |||
/* set up distance table */ | |||
for (i = 0; i < 30; i++) /* make an incomplete code set */ | |||
l[i] = 5; | |||
bd = 5; | |||
if ((i = huft_build(is, l, 30, 0, cpdist, cpdext, &td, &bd)) > 1) | |||
{ | |||
huft_free(is, tl); | |||
return i; | |||
} | |||
/* Save inflate state for this block */ | |||
is->tl = tl; | |||
is->td = td; | |||
is->bl = bl; | |||
is->bd = bd; | |||
return 0; | |||
} | |||
/* | |||
* decompress an inflated type 2 (dynamic Huffman codes) block. | |||
*/ | |||
#define PKZIP_BUG_WORKAROUND | |||
static int inflate_dynamic_setup( | |||
struct InflateState *is /* Inflate state */ | |||
) | |||
{ | |||
int i; /* temporary variables */ | |||
unsigned j; | |||
unsigned l; /* last length */ | |||
unsigned m; /* mask for bit lengths table */ | |||
unsigned n; /* number of lengths to get */ | |||
struct huft *tl; /* literal/length code table */ | |||
struct huft *td; /* distance code table */ | |||
int bl; /* lookup bits for tl */ | |||
int bd; /* lookup bits for td */ | |||
unsigned nb; /* number of bit length codes */ | |||
unsigned nl; /* number of literal/length codes */ | |||
unsigned nd; /* number of distance codes */ | |||
#ifdef PKZIP_BUG_WORKAROUND | |||
unsigned ll[288+32]; /* literal/length and distance code lengths */ | |||
#else | |||
unsigned ll[286+30]; /* literal/length and distance code lengths */ | |||
#endif | |||
ulg b; /* bit buffer */ | |||
unsigned k; /* number of bits in bit buffer */ | |||
/* make local copies of state */ | |||
b = is->bb; /* initialize bit buffer */ | |||
k = is->bk; /* initialize bit count */ | |||
/* initialize tl for cleanup */ | |||
tl = NULL; | |||
TRY | |||
{ | |||
/* read in table lengths */ | |||
NEEDBITS(5) | |||
nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */ | |||
DUMPBITS(5) | |||
NEEDBITS(5) | |||
nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */ | |||
DUMPBITS(5) | |||
NEEDBITS(4) | |||
nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */ | |||
DUMPBITS(4) | |||
#ifdef PKZIP_BUG_WORKAROUND | |||
if (nl > 288 || nd > 32) | |||
#else | |||
if (nl > 286 || nd > 30) | |||
#endif | |||
return 1; /* bad lengths */ | |||
/* read in bit-length-code lengths */ | |||
for (j = 0; j < 19; j++) ll[j] = 0; | |||
for (j = 0; j < nb; j++) | |||
{ | |||
NEEDBITS(3) | |||
ll[border[j]] = (unsigned)b & 7; | |||
DUMPBITS(3) | |||
} | |||
/* build decoding table for trees--single level, 7 bit lookup */ | |||
bl = 7; | |||
if ((i = huft_build(is, ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) | |||
{ | |||
if (i == 1) | |||
huft_free(is, tl); | |||
return i; /* incomplete code set */ | |||
} | |||
/* read in literal and distance code lengths */ | |||
n = nl + nd; | |||
m = mask_bits[bl]; | |||
i = l = 0; | |||
while ((unsigned)i < n) | |||
{ | |||
NEEDBITS((unsigned)bl) | |||
j = (td = tl + ((unsigned)b & m))->b; | |||
DUMPBITS(j) | |||
j = td->v.n; | |||
if (j < 16) /* length of code in bits (0..15) */ | |||
ll[i++] = l = j; /* save last length in l */ | |||
else if (j == 16) /* repeat last length 3 to 6 times */ | |||
{ | |||
NEEDBITS(2) | |||
j = 3 + ((unsigned)b & 3); | |||
DUMPBITS(2) | |||
if ((unsigned)i + j > n) | |||
return 1; | |||
while (j--) | |||
ll[i++] = l; | |||
} | |||
else if (j == 17) /* 3 to 10 zero length codes */ | |||
{ | |||
NEEDBITS(3) | |||
j = 3 + ((unsigned)b & 7); | |||
DUMPBITS(3) | |||
if ((unsigned)i + j > n) | |||
return 1; | |||
while (j--) | |||
ll[i++] = 0; | |||
l = 0; | |||
} | |||
else /* j == 18: 11 to 138 zero length codes */ | |||
{ | |||
NEEDBITS(7) | |||
j = 11 + ((unsigned)b & 0x7f); | |||
DUMPBITS(7) | |||
if ((unsigned)i + j > n) | |||
return 1; | |||
while (j--) | |||
ll[i++] = 0; | |||
l = 0; | |||
} | |||
} | |||
/* free decoding table for trees */ | |||
huft_free(is, tl); | |||
} | |||
CATCH_BEGIN | |||
if (tl) huft_free(is, tl); | |||
return -1; | |||
CATCH_END | |||
/* restore the state from the locals */ | |||
is->bb = b; /* restore bit buffer */ | |||
is->bk = k; /* restore bit count */ | |||
/* build the decoding tables for literal/length and distance codes */ | |||
bl = lbits; | |||
if ((i = huft_build(is, ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) | |||
{ | |||
if (i == 1) { | |||
/* incomplete literal tree */ | |||
huft_free(is, tl); | |||
} | |||
return i; /* incomplete code set */ | |||
} | |||
bd = dbits; | |||
if ((i = huft_build(is, ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) | |||
{ | |||
if (i == 1) { | |||
/* incomplete distance tree */ | |||
#ifdef PKZIP_BUG_WORKAROUND | |||
} | |||
#else | |||
huft_free(is, td); | |||
} | |||
huft_free(is, tl); | |||
return i; /* incomplete code set */ | |||
#endif | |||
} | |||
/* Save inflate state for this block */ | |||
is->tl = tl; | |||
is->td = td; | |||
is->bl = bl; | |||
is->bd = bd; | |||
return 0; | |||
} | |||
/* Routine to initialize inflate decompression */ | |||
void *InflateInitialize( /* returns InflateState */ | |||
void *AppState, /* for passing to putbuffer */ | |||
int (*putbuffer_ptr)( /* returns 0 on success */ | |||
void *AppState, /* opaque ptr from Initialize */ | |||
unsigned char *buffer, /* buffer to put */ | |||
long length /* length of buffer */ | |||
), | |||
void *(*malloc_ptr)(long length), /* utility routine */ | |||
void (*free_ptr)(void *buffer) /* utility routine */ | |||
) | |||
{ | |||
struct InflateState *is; | |||
/* Do some argument checking */ | |||
if ((!putbuffer_ptr) || (!malloc_ptr) || (!free_ptr)) return NULL; | |||
/* Allocate the InflateState memory area */ | |||
is = (struct InflateState *) (*malloc_ptr)(sizeof(struct InflateState)); | |||
if (!is) return NULL; | |||
/* Set up the initial values of the inflate state */ | |||
is->runtimetypeid1 = INFLATESTATETYPE; | |||
is->errorencountered = FALSE; | |||
is->bb = 0; | |||
is->bk = 0; | |||
is->bp = 0; | |||
is->bs = 0; | |||
is->wp = 0; | |||
is->wf = 0; | |||
is->state = -1; | |||
is->lastblock = FALSE; | |||
is->AppState = AppState; | |||
is->putbuffer_ptr = putbuffer_ptr; | |||
is->malloc_ptr = malloc_ptr; | |||
is->free_ptr = free_ptr; | |||
is->runtimetypeid2 = INFLATESTATETYPE; | |||
/* Return this state info to the caller */ | |||
return is; | |||
} | |||
/* Call-in routine to put a buffer into inflate decompression */ | |||
int InflatePutBuffer( /* returns 0 on success */ | |||
void *InflateState, /* opaque ptr from Initialize */ | |||
unsigned char *buffer, /* buffer to put */ | |||
long length /* length of buffer */ | |||
) | |||
{ | |||
struct InflateState *is; | |||
int beginstate; | |||
/* Get (and check) the InflateState structure */ | |||
is = (struct InflateState *) InflateState; | |||
if (!is || (is->runtimetypeid1 != INFLATESTATETYPE) | |||
|| (is->runtimetypeid2 != INFLATESTATETYPE)) return TRUE; | |||
if (is->errorencountered) return TRUE; | |||
do | |||
{ | |||
int size, i; | |||
if ((is->state == -1) && (is->lastblock)) break; | |||
/* Save the beginning state */ | |||
beginstate = is->state; | |||
/* Push as much as possible into input buffer */ | |||
size = BUFFERSIZE - is->bs; | |||
if (size > length) size = (int) length; | |||
i = is->bp + is->bs; | |||
while (size-- > 0) | |||
{ | |||
is->buffer[i++ & BUFFERMASK] = *buffer; | |||
is->bs++; | |||
buffer++; | |||
length--; | |||
} | |||
/* Process some more data */ | |||
if (is->state == -1) | |||
{ | |||
int e; /* last block flag */ | |||
unsigned t; /* block type */ | |||
ulg b; /* bit buffer */ | |||
unsigned k; /* number of bits in bit buffer */ | |||
/* make local copies of state */ | |||
b = is->bb; /* initialize bit buffer */ | |||
k = is->bk; /* initialize bit count */ | |||
TRY | |||
{ | |||
/* read in last block bit */ | |||
NEEDBITS(1) | |||
e = (int)b & 1; | |||
DUMPBITS(1) | |||
/* read in block type */ | |||
NEEDBITS(2) | |||
t = (unsigned)b & 3; | |||
DUMPBITS(2) | |||
if (t <= 2) | |||
{ | |||
is->state = t; | |||
is->lastblock = e; | |||
} | |||
else | |||
{ | |||
ERROREXIT(is); | |||
} | |||
} | |||
CATCH_BEGIN | |||
CATCH_END | |||
/* restore the state from the locals */ | |||
is->bb = b; /* restore bit buffer */ | |||
is->bk = k; /* restore bit count */ | |||
} | |||
else if (is->state == 0) | |||
{ | |||
int ret; | |||
ret = inflate_stored_setup(is); | |||
if (ret > 0) | |||
ERROREXIT(is); | |||
if (ret == 0) is->state += 10; | |||
} | |||
else if (is->state == 1) | |||
{ | |||
int ret; | |||
ret = inflate_fixed_setup(is); | |||
if (ret > 0) | |||
ERROREXIT(is); | |||
if (ret == 0) is->state += 10; | |||
} | |||
else if (is->state == 2) | |||
{ | |||
int ret; | |||
ret = inflate_dynamic_setup(is); | |||
if (ret > 0) | |||
ERROREXIT(is); | |||
if (ret == 0) is->state += 10; | |||
} | |||
else if (is->state == 10) | |||
{ | |||
int ret; | |||
ret = inflate_stored(is); | |||
if (ret > 0) | |||
ERROREXIT(is); | |||
if (ret == 0) | |||
{ | |||
is->state = -1; | |||
} | |||
} | |||
else if ((is->state == 11) || | |||
(is->state == 12) ) | |||
{ | |||
int ret; | |||
ret = inflate_codes(is, is->tl, is->td, is->bl, is->bd); | |||
if (ret > 0) | |||
ERROREXIT(is); | |||
if (ret == 0) | |||
{ | |||
/* free the decoding tables */ | |||
huft_free(is, is->tl); | |||
huft_free(is, is->td); | |||
is->state = -1; | |||
} | |||
} | |||
else | |||
{ | |||
ERROREXIT(is); | |||
} | |||
} | |||
while (length || (is->state != beginstate)); | |||
FLUSHWINDOW(is->wp, TRUE); | |||
return is->errorencountered; | |||
} | |||
/* Routine to terminate inflate decompression */ | |||
int InflateTerminate( /* returns 0 on success */ | |||
void *InflateState /* opaque ptr from Initialize */ | |||
) | |||
{ | |||
int err; | |||
void (*free_ptr)(void *buffer); | |||
struct InflateState *is; | |||
/* Get (and check) the InflateState structure */ | |||
is = (struct InflateState *) InflateState; | |||
if (!is || (is->runtimetypeid1 != INFLATESTATETYPE) | |||
|| (is->runtimetypeid2 != INFLATESTATETYPE)) return TRUE; | |||
/* save the error return */ | |||
err = is->errorencountered || (is->bs > 0) | |||
|| (is->state != -1) | |||
|| (!is->lastblock); | |||
/* save the address of the free routine */ | |||
free_ptr = is->free_ptr; | |||
/* Deallocate everything */ | |||
(*free_ptr)(is); | |||
return err; | |||
} |
Owner Packages
Owner Packages
- No Owners